
1 The Macintosh as an Internet Server

The Macintosh as an Internet Server
David Peterson

Abstract
The Macintosh is appearing on networks alongside UNIX hosts more and more
frequently. Users and network managers alike expecting these Macs to provide the
network services common to these other machines. A few programs are appearing
which handle some of these services, ftp and finger servers exist and discussions are
going on about writing programs to provide other services. Although it would be
preferable to keep all these programs running constantly in order to provide their
services on demand, it is impractical to do so. What I have developed is an
implementation of the UNIX inetd server daemon to run on the Macintosh. It listens for
connections on specified TCP and UDP ports and when one is made a predetermined
program is launched to service the request.

The Internet Server program itself is written as a faceless background application. It
performs no idle processing and as such consumes CPU time only when it must launch
a program to service a remote machine. When this occurs, the server looks up the
appropriate program and launches it with the MacTCP stream pointer as the program’s
launch parameters. This makes the first event received by the program contain the
stream pointer for the connection it must manage. There is also a mechanism through
which the launched program can request that asynchronous notification events related
to the stream be sent to it.

This approach gives the program that implements the service complete control over the
IP connection just as if it had actually been created by the program. It also separates
the listening for service requests from the actual handling of the service, yielding two
advantages. First, there need only be a single program running on the Mac at any given
time to listen for all service requests. Second, it allows the programs providing the
services to be written by any one, in whatever style and language they prefer, making it
easy to implement new services. A developer only needs to write an application, not a
stand-alone code resource, that handles the specific protocol. The only requirement is
that it must respond to a certain AppleEvent.

The Internet Server is managed by a control panel that allows users to specify which
TCP and UDP ports to listen on, and to choose what program to launch when a request
is received. The configuration process is presented in a familiar Mac-like way – there
are no text files to edit or formats to remember.

The whole system is written as a series of programs and a control panel, there are no
drivers or system patches to install and cause system conflicts. It can be easily
expanded to provide other network services, and enables the Macintosh to provide
common services to the other machines it is sharing the network with.

The Macintosh as an Internet Server 1

2 The Macintosh as an Internet Server
1. Introduction

Everyone who has a Macintosh on the Internet1
or some other network that is shared with UNIX
hosts has had to deal with this at some time or
another. How do you get your Mac to be a good
network citizen and provide some of the
standard services that the other machines
provide and expect?

Maybe you want to get files to or from your Mac,
or get your Mac to do something else while
you’re working at a different machine. If it were
a UNIX host it would be simple – copy the files
over using rcp, or if you wanted to make it
difficult, use ftp. If you want to start the machine
processing something else just log in and start
the program.

On the Mac, it’s not quite that easy though.
There are ftp servers that exist, but they are
usually as part of another package. You start up
the program, transfer the files then quit – this
gets old after a while, not to mention that it is
just plain cumbersome to use ftp all the time just
to move a few files around. What if you want to
use rcp? Well, you could write a program to
listen on the specific port and handle the file
transfers. What if you would like to have a finger
server running on your Mac so that other people
could tell if you were at your machine and using
it? Or how about a talk daemon?

It’s no problem to write all these little programs,
but before long you have all these processes
constantly running but their services are only
being used occasionally. Obviously some way to
manage all this is needed.

In comes the Internet Server. This is a single
program that listens for requests for all services
provided. When such a request comes in, the
appropriate program is launched to handle the
transaction. In this manner only one program
needs to be running on the computer at any
given time to provide all services. The
advantages of this should be obvious.

The remainder of the paper will discuss this
specific implementation of an internet server for
the Macintosh. After an architectural overview
describing the major components of the system
there is a more in-depth look at some of the
implementation details followed by a discussion

of some of the problems with the system.

2. Overview
The Internet Server system consists of three
main parts. The server itself, a control panel for
setup and a remote shell server. The system also
requires System 7 or later of the Macintosh OS
because of the use AppleEvents and the
FindFolder routine.

The Server
The concept of a single process to handle all
service requests is nothing new. The UNIX inetd
program was designed for this exact purpose.
What is presented here is a version of the inetd
server for the Macintosh.

The server process is implemented as a
background only application kept in the
Extensions folder and is launched automatically
by the system during startup. The server reads a
configuration file containing protocols and port
numbers to listen on and the programs to launch
when a connection is made.

Once the server is running it does no idle
processing. Instead it uses completion routines
and the WakeupProcess system call to
determine when to launch a child process. The
impact the server has on the computer is
negligible.

Server Configuration
The configuration file mentioned above is
created and managed by a control panel. It
presents the information contained in the
standard UNIX /etc/services and /etc/servers
files. To provide a familiar interface it is modeled
after the ‘File Sharing Setup’ control panel of
System 7 fame.

The top half of the control shows a message
telling the current state of the system plus a
button to toggle it. The bottom half of the control
has a scrolling list with buttons to add, remove
and change entries. Clicking on the ‘New’ button
will bring up a choose file dialog with a couple of
additions to it. Use the radio buttons to choose
the transport protocol and enter the port number

1No, its not a service as some journalists would have you think, The Net is an entity unto itself.
The Macintosh as an Internet Server 2

3 The Macintosh as an Internet Server
that the service will use. Then, just choose the
program

The Macintosh as an Internet Server 3

4 The Macintosh as an Internet Server
that will handle the service, both background
only applications and normal applications are
allowed. Be sure to choose a program written for
the specific protocol. The control panel is more
than happy to let you choose Microsoft Word to
handle network services, however, this is not
advised.

The start/stop button takes effect immediately, if
any changes are made to the list of services the
server will be notified when the control panel is
closed. No restarts are necessary.

Remote Shell
The remote shell server follows the protocol used
by the UNIX rshd. When connections come in on
TCP port 514 rshd is launched and the command
string generated by the peer process on the
remote machine is parsed and the command
executed.

In this Macintosh implementation, remote shell
services are provided in two different ways. First
rshd looks for a stand-alone program in its folder
with the same name as the command passed to
it. If such is found, it is launched and its
arguments are passed to it via the same method
as the stream pointer. If no program by that
name is found, it is assumed that the command
should be handled by ToolServer.

By using the standard script and diagnostic
AppleEvents described in the ToolServer
documentation the command string is given to
ToolServer for execution and its output is
returned to the remote host.

If ToolServer is not running, an error is returned
to the remote host.

3. Implementation
Details
In this section, some of the more important
mechanisms used by the Internet Server are
examined in detail. Items such as the location
and size of the MacTCP streams, passing the
stream from the server to a child process, the
handling of asynchronous notification routines,
and clean-up after a child has exited. The

AppleEvents used by the system are also
described in detail.

MacTCP Streams
Since there is no concept as the inheritance of
file descriptors or the use of data structures by
child and parent after a fork system call,
communicating the existence of a stream to a
child process is a major issue. The only available
solution on the Macintosh is to pass the absolute
address of the MacTCP stream pointer created
by the server on to child process, but this brings
up a rather incestuous situation. Creating the
streams in the server’s heap would appear the
most straightforward, but having one process
accessing the heap of another seems like a Bad
Thing. In addition, if protected memory ever
makes an appearance on the Macintosh this
solution would certainly break.

The use of temporary (Multifinder) memory
would be inappropriate in this situation. The
MacTCP streams are by no means temporary,
and worse yet, must be non-relocatable blocks of
memory. Using temp memory would eventually
result in physical memory being fragmented into
small unusable blocks.

The only other solution then is to use the system
heap. This has two main advantages, since many
applications use the system heap for shared
memory it is unlikely to break under protected
memory, and, more importantly, the system heap
was suggested by Apple DTS.

Contrary to popular opinion, the size of the
buffer given to MacTCP in the original create call
has little effect on performance. I experimented
with sizes ranging from 4 to 32 kilobytes and
performance seemed to top out between 8 and
12 even with high traffic protocols such as rcp.2

Passing Stream Pointers
AppleEvents are used to pass the stream pointer
from server to child. When a child process starts
up, it must register an AE handler to receive an
event that will contain the stream pointer it must
manage.

To simplify the launching of a child process and

2However, the size of buffer used is stored in a resource in the server for those who would like to experiment on their
own.

The Macintosh as an Internet Server 4

5 The Macintosh as an Internet Server
delivery of the stream pointer to it, a feature of
the LaunchApplication trap is employed. It is
possible to stuff an AppleEvent into the
application parameters

The Macintosh as an Internet Server 5

6 The Macintosh as an Internet Server
field of the launch block3, the system guarantees
that this will be the first event received by the
new application. This insures that the child
process receives all the information it needs to
begin processing the service right away, thereby
improving response time.

Asynchronous Notification Routines

ASRs are used my MacTCP to let an application
know about certain events, including remote
termination and data arrival, related to a
particular stream. If an application wants to
receive such events, it registers a routine with
MacTCP at the time of stream creation and then
the routine is called by the system when such
events occur.

There is no way to change an ASR for a given
stream once it has been registered, and since the
Internet Server is responsible for all stream
creation, it makes it difficult for child processes
to access this feature of MacTCP. The
information can’t be bundled into an AppleEvent
and handed to the child for a couple of reasons.
First, the ASR is called at interrupt time which
means that it can’t allocate or move memory,
hence it can’t create or send AppleEvents. Also,
if it were possible to use an AppleEvent, the
notification would show up in the application’s
event queue instead of being processed
immediately which could possibly introduce
timing problems.

Instead, this system uses a really ugly hack. If a
child process wants to register an notification
routine, it must do so with the server. It does this
by sending an AppleEvent containing the address
of its ASR, its own process serial number, the
MacTCP stream it’s related to, and an optional
user value that will be passed into the routine
every time it is called. The server builds a list of
ASRs using this information. When the servers
notification routine is called it performs a lookup
based on stream pointer and calls the
appropriate routine in the child process.

Child Exit and Cleanup

It is up to the individual child processes to
release the MacTCP stream they were handed
and to dispose of the memory allocated for it.
This is mandatory, once the server has passed a
stream pointer to a new process it forgets about
it completely. The release call to the MacTCP
driver returns a pointer to the buffer originally
given to the system in the create call.

The list of notification routines is managed
automatically by the server by listening for
‘Child Died’ events which are sent to it by the
system when a child process has exited. Upon
receiving such an event, the server looks up the
ASR by using the process serial number of the
child as a key and then removes that entry from
the list. However, this doesn’t work for children
sub launched by the remote shell process
because the server isn’t sent ‘grandchild died’
events. Instead, they must manufacture their
own child died event and send it to the server.4 I
admit, this is gruesome, but the only other
alternative was to keep the remote shell process
alive maintaining its own list of ASRs much like
the server does. This would keep the system
transparent, but seemed like needless overhead.

Programming New Children
There are very few requirements imposed on a
programmer who wants to make new servers for
the system. In fact, there are only two: the
program must be able to communicate with the
MacTCP driver5 and must be able to receive at
least one AppleEvent, and send another if it
wants to register an ASR.

The specific AppleEvents are described in the
figures below, their format is copied from the
AppleEvent chapter of Inside Macintosh Volume
VI. Full source code for the Internet Server and
several example daemons is provided.6 Included
is a C++ library implementing a generic
background only application which can easily be
subclassed to implement a specific service.
There is also a small library of TCP and UDP
calls.

The following figure represents the AppleEvent

3By using the AECoerceDesc routine you can coerse the data contained in an AppleEvent into a different type. See
Inside Macintosh, Vol VI pp 101.
4Only if the process has registered an ASR with the server.
5For information on MacTCP programming, please consult the MacTCP Developers Kit, APDA #M0217LL/A
6If not on the same disk as this paper, please send mail to davidp@cst.usc.edu requesting it.

The Macintosh as an Internet Server 6

7 The Macintosh as an Internet Server
that a child must respond to on startup. The
event ID determines the transport protocol being
used, either TCP or UDP. The event contains a
long integer which is to be interpreted as a
stream pointer returned from the create call to
the MacTCP driver.

The Macintosh as an Internet Server 7

8 The Macintosh as an Internet Server
If this is event is being sent to a child of the
remote shell process it also contains the string
generated by the peer process on the remote
machine.

Descriptor type:
Data:

typeType
Event class
('INET')

Keyword: keyEventClassAttr
Descriptor record:

Event class attribute

Descriptor type:
Data:

typeType
Event ID
('TSTR' or 'USTR')

Keyword: keyEventIDAttr
Descriptor record:

Event ID attribute

Descriptor type:
Data:

typeLongInteger
StreamPtr for TCP
or UDP connections

Keyword: 'STRM'
Descriptor record:

MacTCP TCP/UDP StreamPtr attribute

Descriptor type:typeAppleEvent
Data: List of attributes and parameters

Data type AppleEvent

Descriptor type:
Data:

typeChar
Null terminated
string containg
arguments to be
passed to child

Keyword: 'CMND'
Descriptor record:

rcmd cmd string attribute

This figure shows the format of the event used to
register an asynchronous notification routine
with the server. The destination address of this
AppleEvent is always ‘inet’ – the signature of the
server process.

The event contains the child’s process serial
number, the address of the child’s notification
routine, a user value to be passed to the routine
when it is called, and the MacTCP stream pointer
this routine is related to.

Descriptor type:
Data:

typeType
Event class
('INET')

Keyword: keyEventClassAttr
Descriptor record:

Event class attribute

Descriptor type:
Data:

typeType
Event ID
('TNFY' or 'UNFY')

Keyword: keyEventIDAttr
Descriptor record:

Event ID attribute

Descriptor type:
Data:

typeLongInteger
StreamPtr for TCP
or UDP connections

Keyword: 'STRM'
Descriptor record:

MacTCP TCP/UDP StreamPtr attribute

Descriptor type:
Data:

typeLongInteger
Pointer to asyncronous
notification routine (ASR)

Keyword: 'ASR '
Descriptor record:

Notify proc attribute

Descriptor type:
Data:

typeLongInteger
User data pointer
parameter of ASR

Keyword: 'USRP'
Descriptor record:

User data pointer attribute

Descriptor type:
Data:

typeProcessSerialNumber
Process serial number
of source application

Keyword: keyProcessSerialNumber
Descriptor record:

Process serial number attribute

Descriptor type:typeAppleEvent
Data: List of attributes and parameters

Data type AppleEvent

Descriptor type:
Data:

typeApplSignature
Target application's
address ('inet')

Keyword: keyAddressAttr
Descriptor record:

Target application attribute

4. Problems
There are several holes in the system, this
section will look at some of the major problems
with the current design of the Internet Server.

Security
There is none. This isn’t quite as bad as it sounds
except in the case of the remote shell service.

The Macintosh as an Internet Server 8

9 The Macintosh as an Internet Server
Instead

The Macintosh as an Internet Server 9

10 The Macintosh as an Internet Server
of introducing yet another set of accounts and
passwords for people to manage the issue was
ignored. Hopefully with the introduction of

A.O.C.E7 there will be a user authentication
service built into the system software that the
Internet Server could take advantage of.

Port Numbers
Currently, the user must know the specific ‘well
known’ port number of a service in order for the
server to listen on it – an awkward complication
in the server configuration. A cleaner solution
would be to create an remote procedure call
library that could be used to contact a server to
obtain the proper protocol name to port number
mapping. In essence an equivalent to the UNIX
getservbyname library call. It would also be
possible to keep a local copy of a services file,
but that would require another piece of the
system to be maintained by the user.

Notification Manager
There are some limitations on using the
Notification Manager in conjunction with
faceless background applications. There is no
way to post a polite notification and then let the
user bring your application to the front and deal
with the problem on their terms. When using
BOAs, you can only put up a dialog – immediately
and in front of everything else. Background
processing still occurs, so the machine isn’t
froze. Its just annoying.

Asynchronous Notification Routines

The current mechanism of jumping from one
routine to another is just plain ugly. In addition,
to work reliably it requires masking off
interrupts while updating the ASR list. I couldn’t
think of another solution besides walking
through the system heap looking for the previous
ASR and changing it by hand though. Jumping
from procedure to procedure seemed like the
lesser of the two evils.

Conclusion
The software presented here goes a long way
toward integrating a Macintosh into a
heterogeneous network environment. Most of
the system is hidden, and the one user interface
point borrows heavily from current pieces of the
operating system thereby providing such
network services in a Macintosh-like manner.

The Macintosh as an Internet Server 10

11 The Macintosh as an Internet Server

The system is completely open and easily
extended. The only requirements of a child
server is that it respond to a certain AppleEvent.
There are no libraries that must be used, or data
structures to be aware of.

Also, this implementation presents almost no
burden to the rest of the machine. No idle
processing is performed, and because no patches
or drivers are installed the possibility of system
conflicts is minimized.

Bibliography
[1] Apple Computer, Inc. Inside Macintosh, Files,

Processes, Memory, Volumes I-VI. Addison-
Wesley, 1985-1992.

[2] Apple Computer, Inc. MacTCP
Documentation Kit. 1991.

[3] Apple Computer Inc. New Technical Notes:
Background Only Applications. December
1992.

[4] The Regents of the University of California,
miscellaneous code from 386BSD source
distribution. 1983, 1991.

[5] W. Richard Stevens. UNIX Network
Programming, Prentice Hall 1990.

[6] The Net. Especially the contributors to
comp.sys.mac.programmer.

[7] Apple DTS.

7Apple Open Collaboration Environment
The Macintosh as an Internet Server 11

